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Gate-controlled spin-spin interactions in lateral quantum dot molecules
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We present a method of changing the effective spin-spin interactions of electrons localized in quantum dot
molecules from antiferromagnetic to ferromagnetic using electrical means. We show that starting with antifer-
romagnetic interaction of two electrons localized in two quantum dots, the effective spin-spin interaction can
change to ferromagnetic by allowing interaction with a third dot containing two spin singlet electrons. The total
spin of this four-electron complex can be tuned by changing the third dot potential from singlet to triplet. This
is demonstrated using the linear combination of harmonic orbitals combined with the configuration-interaction
method mapped onto the Hubbard and an effective -/ model for the triple dot system. All three approaches
predict singlet-triplet spin transition, i.e., a mechanism for changing the magnitude and sign of the effective

Heisenberg interaction between two localized spins.
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I. INTRODUCTION

Manipulating the spin-spin interactions of localized spins
is essential for the realization of spintronic and quantum in-
formation devices.!™ Lateral quantum dots (QD) defined in
two-dimensional electron systems by surface gate electrodes
are particularly interesting due to their tunability by applied
gate voltages and scalability. Lateral gates allow for the lo-
calization of a controlled number of electrons.® In ideal
single dots, the one-electron energy levels are given by the
Fock-Darwin (FD) states, with the resulting shell structure.’
The total spin of QDs with few electrons is determined by
generalized Hund’s rule.”® In practice, gate anisotropy and
disorder prevent the formation of spin-polarized complexes.
The spin states of electrons in a single QD can however be
tuned by the magnetic field or by the gate voltages at a fixed
magnetic field.” In double quantum dots (DQDs), tunneling
and exchange interactions lead to complex molecular spin
states.'®"!* For dots with one electron each, coherent manipu-
lation of the spin states was demonstrated using external and
nuclear magnetic fields.'>!® As expected, the interaction of
the spins of the two electrons was antiferromagnetic; since in
the absence of a magnetic field, the two electrons in an arbi-
trary confining potential always have spin singlet ground
state.

In this work we discuss a method of changing the effec-
tive spin-spin interaction. We show that starting with antifer-
romagnetic interaction of two electrons localized in two
quantum dots, the effective spin-spin interaction can change
to ferromagnetic. This ferromagnetic interaction arises by
coupling the two electrons to a third dot containing two spin
singlet electrons. Hence the total spin of the two-electron
complex can be tuned from singlet to triplet by changing the
potential of the third dot. The spin properties of a resonant
triple quantum dot (TQD) molecule and, in particular, the
existence of a spin-polarized complex of four electrons have
been discussed already.'’° Recently, the tunability of the
number of electrons and their spatial distribution in a lateral
TQD system was experimentally demonstrated,”!=2* with
transport experiments in a magnetic field showing coherent
coupling between the dots.?*??
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In a resonant TQD with four electrons, the ground state is
predicted to be a spin triplet.'” Surprisingly, the singlet-
triplet gap of the four-electron complex is predicted to be
proportional to the tunneling matrix element #: a single elec-
tron property. This cancellation of electron-electron interac-
tions was understood as a result of the nontrivial interplay of
statistics and topology of a TQD molecule. It was also shown
that the magnetic field through the Aharonov-Bohm effect
allows engineering of the degeneracy of the molecular
orbitals,'”?? leading to singlet-triplet transitions with increas-
ing magnetic field.

In this paper, we present a purely electrical method of
generating the singlet-triplet transition in the ground state of
a TQD molecule with four electrons. We consider a TQD
with triangular geometry as shown schematically in Fig. 1.
We start with two quantum dots (dots 1 and 3) containing
one electron each; a part of a larger quantum dot network. A
third dot (dot 2) is energetically well separated from the
other two dots. With dots 1 and 3 on resonance, the spin-spin
interaction is antiferromagnetic. We next change the bias of
dot 2 containing two electrons; one with spin up and the
other with spin down. We show that the interaction of the
two localized electrons in dots 1 and 3 changes sign at a

(@) (b)

FIG. 1. (Color online) Schematic diagram of a four-electron spin
complex of a TQD system in triangular geometry. Two dots contain
a single electron each and a third dot contains two spin-singlet
electrons. (a) When the dot containing two singlet electrons are
energetically well separated from the other dots, the system is es-
sentially a two-electron spin complex. The interaction between the
two localized spins is antiferromagnetic. (b) We can change the gate
voltage to bring the dot with two electrons energetically closer to
the other two dots with localized electrons. The interaction between
two localized electrons changes from antiferromagnetic to
ferromagnetic.
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FIG. 2. Total spin transition induced by biasing one of the dots.

The energy levels on the left are the single electron energy levels of

the three isolated QDs and the energy levels on the right are of the
molecular orbitals of the TQD. At resonant case, the doubly degen-
erate excited molecular levels are occupied by electrons with same
spin directions due to the exchange interaction. If a bias is applied
to one of the dots, the degeneracy is lifted. With strong enough bias
the two lowest molecular levels are both doubly occupied, resulting
in spin singlet ground state.

critical value of the bias of dot 2 without significant delocal-
ization of the two active electrons. As the third dot is brought
into resonance, the ground state remains triplet but the pair
of spin-polarized electrons is delocalized among the three
quantum dots. This triplet-singlet transition can be under-
stood in terms of the degeneracy of the molecular orbitals
which is controlled by biasing one of the dots, as schemati-
cally depicted in Fig. 2.

The plan of this paper is as follows. In Sec. II we intro-
duce three different methods for describing the electronic
properties of a TQD molecule. In Sec. IT A, we use the har-
monic orbitals of each quantum dot as basis states and de-
scribe how we can construct molecular orbitals as linear
combinations of harmonic orbitals (LCHO). In Sec. II B, the
Hubbard model is derived from the LCHO method by repeat-
edly using perturbation theory described in Appendix A.
Both LCHO method and Hubbard Hamiltonian are combined
with the configuration-interaction (CI) method to determine
the ground and excited states of the TQD system. In Sec.
II C, we derive an effective ¢t-J Hamiltonian in a reduced
Hilbert space of the Hubbard Hamiltonian. This effective 7-J
Hamiltonian gives a more intuitive picture of the spin prop-
erties of the system. In Sec. IIl, we present our numerical
results. Using LCHO-CI method we show that near the
singlet-triplet spin transition the biased dot is filled with two
electrons and the other two dots are singly occupied. It is
shown that the spin transition is due to the change of the spin
state of two localized spins. The Hubbard model and the ¢-J
model are shown to well describe the essential physics of the
spin transition. In Sec. IV, we give a brief summary of re-
sults.

II. METHODS
A. Linear combination of harmonic orbitals

In this paper, all the energies are expressed in unit of the
effective Rydberg R=m’e*/2€%* and all lengths in unit of
the effective Bohr radius az=eh?/me>. m, is the effective
mass of the electron, e is the electron charge, and € is the
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dielectric constant. With GaAs parameters m,=0.067m, and
e=12.4, we have R=5.93 meV and a3=9.79 nm. A single
electron in a triple quantum dot system depicted in Fig. 1 is
described by the Hamiltonian

3
Hgp=~V2+ 2, Vi(r), (1)
i=1

where we assume that the confining potential V,(r)’s have a
Gaussian form Vi(r)=-V;, exp[—(r;—_ri)z] centered around the
position of the ith dot r; located at vertices of an equilateral
triangle. The Gaussian potential is separated into the har-
monic part V?O(r) and the anharmonic part 6V(r),

0?
Vir)==Vo+ I’(r —1)?+ 6Vi(r) = V?O(r) +6V,(r),

2)

where ,;=21V,/d, is the characteristic energy of the har-
monic confinement. Following the method developed in our
previous work,'> we expand the wave function in terms of
harmonic-oscillator orbitals localized on each quantum dot
and obtain a generalized eigenvalue problem for expansion
coefficients a,

Hspa= Ssa, (3)

where S is the overlap matrix resulting from the nonorthogo-
nality of the harmonic orbitals from different quantum dots
and a is the eigenvector. This can be cast into a standard
eigenvalue problem

H{yb = b, 4)

where Hlp=(\S)"'Hgp\S and b=1Sa. \S is found to be
VSE§/2V§ where V is the eigenvector matrix of S and Ej is
the diagonal matrix with eigenvalues of S. In this paper, we
obtain the molecular orbitals by solving the above single-
particle problem using s and p orbitals from each dot. Once
we obtain the molecular orbitals, the many-body Hamil-
tonian is given by

7 _ T
H=2 &\¢} 000
Ao

1 - ot
+5 > E<)\1)\2|VC|)\3)\4>C)I\lo'c)\z(y’c)\30’c)\40"
N3Ny g
(5)

where N\’s are indices for the molecular orbitals, o is the spin,
and

2
r—r|

<7\17\2|‘A/c|)\3)\4>=fd1'f dl"'/’:I(l‘)dfiz(r')
X 'J/A3(r/)‘/’>\4(r) (6)

is the Coulomb matrix element in the molecular-orbital basis.
To solve the many-body problem, we take all possible con-
figurations as our basis for many-electron states and exactly
diagonalize the resulting many-body Hamiltonian matrix.
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B. Hubbard model

Since electrons are well localized in each quantum dot,
we can use the Hubbard Hamiltonian to model the system. In
this section, we will explicitly derive the Hubbard Hamil-
tonian from the LCHO method. If we include only s orbitals
from each dot, the diagonal and off-diagonal elements of HéP
in Eq. (4) correspond to the on-site energy and tunneling
elements in the Hubbard model, respectively. If we include
more than one harmonic orbital from each dot and the energy
differences between the higher orbitals and the s orbitals are
much larger than the off-diagonal elements, we can derive
the Hubbard Hamiltonian containing only one orbital from
each dot by using the partitioning perturbation theory de-
scribed in Appendix A. We separate the single electron Hil-
bert space into subspaces D, and D, such that D, is spanned
by s orbitals from each dot and Dy is spanned by all the other
harmonic orbitals. We transform the Hamiltonian to a block-
diagonal form to separate the subspaces D, and Dy using the
first-order perturbation theory iteratively. The first-order ap-

proximation of the unitary operator U=1+80=0 | trans-
forms Eq. (4) into H;b;=&Sb,, where H,=UH{,U,, b,
=U;'b, and S;=UJU,. The matrix elements of SM which
makes H,; block diagonal up to first order are given in Eqs.
(A5) and (A6). Note that 01 is not precisely unitary and
therefore we have nontrivial overlap matrix S; in the trans-
formed eigenvalue equation. This is a generalized eigenvalue
problem as in the LCHO method and we can transform this
into a standard eigenvalue problem,

H!b|=sb]. (7)

The transformed matrix Hj is not exactly block diagonal but
the off-diagonal blocks are of the second order because the
off-diagonal blocks of H; are of the second order and the
deviation of S; from the identity matrix is also of the second
order. Now we can perform the same procedures of the first-
order partitioning perturbation theory and the orthonormal-
ization of the basis iteratively, until it reaches the desired
accuracy. The resulting Hamiltonian matrix represents the
system in the basis of new orbitals which are orthogonal to
each other and still well localized in each dot. The diagonal
elements are the on-site energy of each localized levels and
the off-diagonal elements are the tunneling matrix elements
in the Hubbard Hamiltonian.

Combining the direct Coulomb interaction between the
localized orbitals obtained in this way, the Hubbard Hamil-
tonian is given by

HHubbaId - E g Cw_Cw.+ E 2 tlj io ]0’+ E U”zTnzl

i,o i#j o

+ = 2 VUP;Pp (8)
Hﬁ]

where ﬁm:c;c,-g and p;=n;;+n; and i,j=1,2,3 are indices
for each quantum dot and o==* is the spin. The first term
(EIEIO) is the Kinetic energy, the second term (=T) is the
tunneling between different dots, the third term (=H)) is the
on-site Coulomb repulsion, and the last term (=H,) is the
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FIG. 3. Parameters of the Hubbard Hamiltonian of a TQD sys-
tem. g; is the energy level of the ith QD and 7; is the tunneling
matrix element between dots i and j. U; is the on-site Coulomb
repulsion in dot i and V;; is the direct Coulomb interaction between
two electrons in dots 7 and ;.

direct Coulomb interaction between two particles in different
dots (see Fig. 3). The first two terms are obtained by the
iterative transformation described above and the Coulomb
interaction U’s and V’s are obtained by directly calculating
the Coulomb matrix elements in the new localized orbital
basis obtained after all the transformations. This Hubbard
Hamiltonian can be solved using configuration-interaction
method as in the LCHO-CI method.

C. t-J Hamiltonian

For a four-electron system in a TQD, it is easier to work
in the hole picture rather than the electron picture. A hole is
defined as the absence of an electron with respect to the
completely filled configuration with six electrons. Thus, a
four-electron system corresponds to a two-hole system. The
particle-hole transformation in the Hubbard Hamiltonian
corresponds to the changes 1;—- tj and g, —-¢;-U;
=2%%)Vij. Thus lowering the conﬁmng potential of dot 2
corresponds to increasing the hole orbital energy of dot 2. In
the following, all the operators and parameters are for holes.
Note that in the hole picture, the tunneling matrix elements
t;’s are real and positive, in contrast to the electron picture
where the tunneling elements are real and negative. For half-
filled systems with three electrons (or three holes), the Hub-
bard Hamiltonian can be reduced to a Heisenberg spin
Hamiltonian.2027 But for two-hole systems, it reduces to an
effective 7-J Hamiltonian in a reduced Hilbert space formed
by low-energy configurations. We define two subspaces of
two-hole Hilbert space according to the number of doubly
occupied dots. D4 consists of configurations with no doubly
occupied dot, and Dy consists of configurations with a dot
doubly occupied by two holes (see Fig. 4). We make use of
the partitioning perturbation theory in Appendix A to find
effective Hamiltonian of subspace D, (see Appendix B for
explicit derivation). Introducing the spin operators

|
S(’) = EEB C;(a()'aﬂciﬁ, (9)

where o is the vector of Pauli matrices, the effective #-J
Hamiltonian restricted in subspace Dy is
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FIG. 4. Possible configurations of the TQD system with two
holes. The circles represent holes and the separation between two
levels in the same dot is the on-site Coulomb repulsion energy U.
Configurations with no doubly occupied dot belong to D4 and con-
figurations with a doubly occupied dot belong to Dg. The energy
levels of the second dot are shifted by A by applying appropriate
voltages to the gate electrodes. Configurations in Dg have much
higher energy than configurations in 1), due to the large on-site
Coulomb repulsion energy.

I:I,_,=I:IO+I:IU+fIV+f"+fIJ+FI3, (10)

where

I:I]= E J,j(s(l) . S(]) -

i ﬁ]> (11)
(i.j)

=

H3 = E JUIE (c,onjo'clo' Cm. ;a- JU'CIO') (12)
i#j#1(#1) o

and (i,j) are pairs of different sites i and j, and & is the
opposite of o. The coefficients J; ; and J;; are given in Egs.
(B8)-(B11) for a simple case w1th £1=83=8(, £,=€+A,
=13 =131=1, U1=U2= U3=U, and V12=V23=V31=V, with
A being the energy shift of the second dot due to the change
of the gate voltage.

Since H .7 commutes with the total spin, we can solve the
t-J Hamiltonian for spin triplet and spin singlet separately.
For spin triplet it is sufficient to consider only one of the
three different values of S . For Sfot—l we have three con-
ﬁgurations |T,)= C3TCIT|O> ITy)=c{,c};0), and |T3)
=c},cl;|0), where [0) is the hole vacuum state. Then the
Hamiltonian matrix for the triplet is

E, -t —t
Hlr=|-t E; —t], (13)
-t -t E,

where E,=2gy+V and E,=2gy+V+A. We obtain three trip-
let eigenvalues and the ground-state energy is

1 1
ET=E(E1+E2—t)_E\f’(Ez_El_t)2+8t2' (14)

For the spin singlet, we have three conﬁgurations IS
_‘(C3Tcli+clT631)|0> $.c])I0), and |S3)
1_§(C2TCS 1+C3TC2 l)|0> The Hamlltonlan matrix for the sin-
glet is

=
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EAI T T
[H,/ls= r EAZ o, (15)
PoT R,
where
E\=E,-J =2¢gy+ V- Mz, (16)
u-v

8 1 1
E,=E,—J=2 -FV+A—2#< + )
2= £ U-V-A" U-V+A

(17)
T=t+2J,=t t2< + 1 ) (18)
- T U-V U-V-A)
27
f=t+2]i=t—-—. 19
3 U-V+A (19)

The singlet ground-state energy is given by

——(E1+E2+t)— \/(Ez E +7)+87. (20)

From the Hamiltonian matrices corresponding to the spin
triplet and singlet cases [Egs. (13) and (15)], we can under-

stand the physical meaning of each terms in I:I,, J- Since we
are working in the hole picture, the tunneling matrix element

t is positive and therefore the tunneling Hamiltonian T favors
spin triplet configurations. On the other hand, the antiferro-

magnetic Heisenberg term H ; given by Eq. (11) favors the

spin singlet configuration. H; defined in Eq. (12), which is
usually neglected in the 7-J model of high-T, superconduct-
ing materials for small dopings,?®?° slightly reduces the ef-
fective tunneling elements for singlet configurations.

For the case A=0, which corresponds to a resonant TQD
molecule, we obtain

21

E¢—Er=t- .
s—Er U—-v

(21)

This agrees with the result of Ref. 17. Since ¢ is positive and
t/(U-V)<1, we have a triplet ground state and the gap be-
tween the singlet excited state and the triplet ground state is
proportional to the tunneling ¢. For t<< A< U, we have

47
ES_ET:_U_V. (22)

The singlet ground state is separated from the triplet excited
state by the usual singlet-triplet gap of DQD systems. In this
limit, the second dot is energetically well separated from the
other two dots and the two holes in dots 1 and 3 are effec-

tively described by the Heisenberg Hamiltonian H 7.
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FIG. 5. (Color online) Energy differences between singlet and
triplet ground states as a function of the bias V,, on dot 2 calcu-
lated using LCHO-CI method with different numbers of basis
harmonic-oscillator states. Solid black curve is with s orbitals from
each dot, dashed red curve is with s orbitals from dots 1 and 3 and
s and p orbitals from dot 2, and dot-dashed blue curve is with s and
p orbitals from each dot. The Gaussian confining potentials are
defined by V; y=V;(=6.0 and ,=0,=0;=2.5. The distance be-
tween any two dots is 3.7. We changed V, from 6.0 to 7.5.

III. RESULTS

Now we present the results of numerical calculations for
the triangular TQD with four electrons using different meth-
ods described in Secs. II A-II C. Figure 5 shows the singlet-
triplet spin transition in the ground state obtained by
LCHO-CI method with different numbers of harmonic-
oscillator orbital basis states. The black solid curve was cal-
culated using only s orbitals from each QD. We lowered the
Gaussian confining potential of the second dot by increasing
V, o while keeping (), fixed. As V, increases, the energy
gap between the triplet and singlet states decreases. At high
enough V,, a spin transition occurs and the ground state
becomes spin singlet. The red dashed curve was calculated
with s orbitals from dots 1 and 3 and s and p orbitals from
dot 2. This is a valid approximation for a moderately high
bias V,, where the p orbitals of dots 1 and 3 are energeti-
cally higher than the orbitals included. The p orbitals of dot
2 are not occupied in the range of V,, values we consider,
and the result is very similar to the result obtained with only
s orbitals. If s and p orbitals from all three QDs are included
(the blue dot-dashed curve), the effective tunneling between
the dots is increased and the spin transition occurs at higher
V5. Although inclusion of higher orbitals would make the
spin transition to occur at even higher V,,, the LCHO-CI
method with small number of orbitals is accurate enough to
describe the essential physics of the spin transition.

Figure 6 compares the results obtained by LCHO-CI (the
black solid curve) and the Hubbard Hamiltonian (the blue
dashed curve). We used only s orbitals from each dot for the
LCHO-CI method. The parameters of the Hubbard Hamil-
tonian are obtained as described in Sec. II B. The x axis is
the energy shift in the on-site energy of dot 2 induced by
changing V,, and the y axis is the energy difference be-
tween the singlet and triplet ground states. Initially, in a reso-
nant TQD, the ground state is spin triplet and the gap be-
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FIG. 6. (Color online) Energy differences between singlet and
triplet ground states as a function of the energy shift A calculated
using LCHO-CI method with only s orbitals from each dot(solid
curve) and using the Hubbard Hamiltonian with parameters ob-
tained from LCHO-CI method.

tween the spin singlet and triplet is proportional to the
tunneling element ¢. As we lower the energy of dot 2, the gap
shrinks and spin singlet becomes the ground state. The slight
shift to the left of the Hubbard model result can be accounted
for by omitted Coulomb interaction terms in the Hubbard
model. The Hubbard Hamiltonian includes only direct Cou-
lomb interactions between localized electrons, while the full
Coulomb interaction in the LCHO-CI method includes the
exchange interaction which stabilized the spin triplet ground
state. Therefore the singlet-triplet transition occurs at higher-
energy shift A in the LCHO-CI method.

Figure 7 shows how the electron charge density and the z
component of the spin density change as we apply bias to dot
2 in the LCHO-CI calculation with s orbitals from each dot.
The charge and spin densities are obtained by calculating the
expectation values of the charge and spin-density operators

pr) = X G (r) g (r), (23)
1A n
§(r)=> S V) Taplyr). (24)
aB

in the ground state, where lAﬂ:;(I') and ¢,(r) are the field op-
erators. The upper figures of Fig. 7 show the charge densities

0.8

0.8 0.8 0.8 z
0.4 0.4 04 8
0 04 ¢
o 0 r 0 y E
Dy Oy 0y g
0 v

X X
0.2 0.2 0.2 02 -
0.1 0.1 0.1 g
01 8
0 o 0 @ 0 o =
U oy 0y , B

) X ) X X

(@ (b) (c)

FIG. 7. (Color online) Electron density and z component of the
spin density of the ground state at three different values of A in Fig.

6. The upper (lower) figures show the electron (spin) densities. We
choose S§ =1 for triplet ground states.
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FIG. 8. (Color online) Number of holes (p;: upper panel) and
spin (s;: lower panel) of each dot for the ground state as a function
of the energy shift A calculated using the Hubbard model. Blue
curves correspond to the hole number and spin in dots 1 and 3 and
red curves correspond to the hole number and spin in dot 2.

and the lower figures the z components of the spin densities
for three different values of A shown in Fig. 6. For the spin
triplet ground states, we chose Si =1. In a resonant TQD
molecule [Fig. 7(a)], the ground state is a spin triplet and is
a linear combination of three configurations (2,1,1), (1,2,1),
and (1,1,2). Each quantum dot has one electron and the extra
electron can be in any of the three dots with the same prob-
ability. As we lower the energy of the second dot [Fig. 7(b)],
two electrons reside in dot 2 and one electron in dots 1 and 3,
respectively. The two electrons in dot 2 have opposite spin
directions due to the exclusion principle, thus giving a very
low spin density. The other two electrons in dots 1 and 3
have parallel spin directions. So the ground state can be un-
derstood as a spin singlet in dot 2 plus two parallel localized
spins in dots 1 and 3. For the spin-singlet ground state [Fig.
7(c)], the charge distribution differs very little from case (b).
But the two electrons in dots 1 and 3 form spin singlet,
therefore they do not contribute to spin density. Similarly,
Fig. 8 shows the hole numbers p; and the z component of the
spin 57 in each dot i=1,2,3 as functions of A in the Hubbard
model. We can consider three different regimes. When the
bias A is small [region (1)], all three dots are partially occu-
pied by holes. The ground state is a linear combination of
configurations with two localized holes. For larger A but
before the spin transition [region (2)], dot 2 is almost empty
of holes and two holes are localized in dots 1 and 3 with
parallel spins. The sudden changes in p; and s at around A
=0.43 signal the spin singlet-triplet transition in the ground
state. At a high enough energy shift A [region (3)], the two
localized holes form a spin singlet. Therefore Figs. 7 and 8
show that we can control the interaction between two local-
ized spins by the gate voltage in regions (2) and (3).

Figure 9 shows the results obtained by using Hubbard
Hamiltonian and 7-J Hamiltonian for different tunneling pa-
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FIG. 9. (Color online) Energy differences between singlet and
triplet ground states as a function of the energy shift A calculated
using the Hubbard model (black solid curve) and the effective 7-J
model (blue dashed curve). (a) is for r=0.02 and (b) is for r=0.1.
U=2.0 and V=0.5 for both (a) and (b). Antiferromagnetic-
ferromagnetic transition occurs at Ay=0.18 for (a) and 0.42 for (b).

rameters. We used parameters U=2.0, V=0.5, and ¢=0.02
and 0.1. For the Hubbard Hamiltonian we exactly diagonal-
ized the Hamiltonian matrix in configuration basis, and for
the #-J model we compare the triplet and singlet ground-state
energies [Egs. (14) and (20)]. For a small tunneling ¢ [Fig.
9(a)], -J Hamiltonian gives a very good approximation,
while for a large tunneling ¢ [Fig. 9(b)], -/ Hamiltonian
gives slightly different results but is still a reasonably good
approximation. The gap between singlet and triplet states can
be easily tuned by changing ¢ and A, which can be accom-
plished by tuning the gate voltages. As we increase the en-
ergy shift A, the gap decreases rapidly and the spin state of
the ground state changes from triplet to singlet at strong
enough bias. After the transition, the change in the gap is
relatively small and it approaches the limiting value
—4£2/(U-V). The decrease in Eq—Ey is steeper for smaller ¢
and reaches the limiting value faster because it is easier to
satisfy the condition t<< A< U for smaller ¢. The values of A
where the transitions occur are much smaller than the on-site
Coulomb repulsion U, which is consistent with our initial
assumption U>A.

Figure 10 shows the phase diagram of the total spin as a
function of the tunneling ¢ and the energy shift A obtained by

using the Hubbard model. Since the tunneling Hamiltonian T
favors the spin triplet, a larger bias is required for the ground
state to be a spin singlet as the tunneling ¢ increases.

IV. SUMMARY AND DISCUSSIONS

To summarize, we theoretically demonstrated an electrical
method of changing an antiferromagnetic interaction to a fer-
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FIG. 10. Phase diagram of singlet and triplet ground states in the
space of the energy shift A of dot 2 and the tunneling . White
region is for the spin triplet ground state and hashed region is for
spin singlet ground state. Spin triplet (singlet) ground state corre-
sponds to negative (positive) effective coupling J4 in the effective
Heisenberg Hamiltonian (25).

romagnetic one between two localized electrons in two quan-
tum dots by connecting them with a third dot with two elec-
trons. We explained how to derive the Hubbard Hamiltonian
from the microscopic LCHO-CI method using partitioning
perturbation theory. In this way we can understand how the
external potential can change the Hubbard model parameters
in a systematic way. The Hubbard Hamiltonian can also be
transformed into an effective #-J Hamiltonian in a restricted
Hilbert space. The results show that all three approaches ex-
plain the change of the effective interaction and spin transi-
tions between triplet and singlet ground states.

When dot 2 is far from the resonance and the transition
point (for a very high A), the two electrons in dot 2 are
energetically isolated from the electrons in dots 1 and 3. The
system then essentially consists of two localized electrons
and the ground state is a spin singlet. Near the transition
point, dot 2 is still occupied with two electrons and dots 1
and 3 are singly occupied. So the system can be described by
an effective Heisenberg Hamiltonian of two localized spins

Hep=JoSY - 8@, (25)

and we change the effective interaction from ferromagnetic
to antiferromagnetic as well as the magnitude of the coupling
constant J.¢ by tuning the external gate voltages. Controlling
the time dependence of J. by time-dependent gate voltage
pulse is of importance in quantum information and compu-
tation. Let us take a system prepared to be in the spin singlet
ground state, for example. If we decrease J. so that the
change is much slower compared to all decoherence mecha-
nisms present, we can induce the spin singlet-triplet transi-
tion. On the other hand if the change in J.4 is much faster,
then the system will remain a spin singlet. This type of tun-
ability can be useful in realizing spin-based qubits in solid-
state systems.

The different spin characters of resonant TQD molecules
with two electrons (singlet) and with two holes (triplet) can
be also of importance in the context of quantum materials.
For example, the two-electron spin singlet states can be con-

PHYSICAL REVIEW B 78, 165317 (2008)

sidered as a minimal resonating valence bond (RVB)
state:3%3! one of the possible mechanisms of the high-T, su-
perconductivity. A two-hole triplet state was also predicted in
copper compounds with the charge-transfer energy larger
than the on-site Coulomb energy.>? The voltage control of the
singlet-triplet transition may open the possibility of inducing
ferromagnetic-antiferromagnetic  transitions in artificial
quantum dot lattices.
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APPENDIX A: PARTITIONING PERTURBATION
THEORY

In this section, we describe the partitioning perturbation
method used to derive an effective Hamiltonian in a re-
stricted Hilbert space. Let us consider a Hamiltonian

H=H,+H', (A1)
where I:IO is the unperturbed Hamiltonian and H' is a small
perturbation. We will assume that the eigenstates of H,, can
be grouped into two subspaces D, and Dg, where states in D
have similar energies and states in Dy have much higher
energies than states in D4. The energy difference between
states in D, and in Dy is assumed to be much larger than the
matrix elements of H'. The Schrodinger equation for H is, in
a matrix form,

H +H, H, a a
(Bt W o) (0]
Hg, (Ho)pp + Hpp / \ag ap

We introduce a unitary transformation?%-2%-33

A

P PO [ A
O=eS=1+i§— 82— =5+ -, (A3)
2”76

where S is a Hermitian operator, which is assumed to be a
sum of terms with different order,

§S=8W 4 5® 48004 .. (A4)

We choose S such that the Hamiltonian is block diagonal
after transformation by U up to a certain order. The matrix
elements of the first-order term SV are given by

iH,
[SSlu=—5 "G keDun leDs  (AS)
& —¢&
iH
[Sli=—5 " keDun leDs  (A6)
& — &
S =S =0, (A7)

and the effective Hamiltonian matrix for the the reduced Hil-
bert space D4 up to second order is

165317-7
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(Hred)AA = (U+HU)AA = (HO)AA + H/,\A + H(Az/z = (HO)AA + H;A

i ! ’
+ E(HABSE;A)A - Sz(ﬁtll_’)?HBA)' (A8)
The last term effectively takes into account the presence of
the subspace Djp.

APPENDIX B: DERIVATION OF ¢-J Hamiltonian

In this Appendix, we explicitly derive the 7-J Hamiltonian
[Eq. (10)] for a TQD with two holes from the Hubbard
Hamiltonian [Eq. (8)]. The 7-J Hamiltonian is the effective
Hamiltonian restricted to a subspace of lower-energy states.
To restrict the Hilbert space to lowest-energy states, we make
use of the partitioning perturbation theory in Appendix A.
We use all possible configurations as the basis for the many-
particle Hubbard Hamiltonian and define the two subspaces
as follows: D, consists of configurations with no doubly oc-
cupied dot and Dy consists of configurations with a dot dou-
bly occupied by two holes (see Fig. 4). We also assume that
U;>V,;;,A,t;;. The large on-site Coulomb repulsion makes
sure that configurations in Dz have much higher energies
than configurations in D,. ﬁo, H u» and H v conserve the num-
ber of holes at each single hole state, thus diagonal in the

configuration basis. The tunneling Hamiltonian T can be
separated according to whether the tunneling increases or
decreases the number of doubly occupied sites,?®2%33

T= 2 2 fijCzTnga = Z 2 tif(iz+ hi&)cz(acjo(ﬁ_jﬁ +hjg)

i#j o i#j o

=2 > tij(ﬁiﬁclrcjvﬁj(7+ hisCioCjohjc)
i+j o

+2 2 tijﬁiz?cjo—cjojij&"' > tijﬁiﬁcjo-cjoﬁja'

i#j o i*j o

=70 4 70 1 70, (B1)

where & is the opposite of o and ﬁi5= 1—17i;z The first term in
7© moves one hole from a doubly occupied site to a singly
occupied site, thus conserving the number of doubly occu-
pied sites. The second term in 7 moves one hole from a
singly occupied site to an empty site, thus again conserving
the number of doubly occupied sites. 7™ moves one hole
from a singly occupied site to another singly occupied site,
increasing the number of doubly occupied sites by one. 7
moves one hole from a doubly occupied site to an empty site,
decreasing the number of doubly occupied sites by one.
Therefore, 7 and T connect the two subspaces D, and

Dpg, while 7O does not. Using Eq. (A8), the effective Hamil-
tonian matrix in the reduced Hilbert space D, is given by
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e
H,oo=Hy+ Hy+ Hy+ T+ J[TESE - SIETE),
(B2)

where the first-order term of S is obtained using Eqs. (A5)
and (A6),

(1) l[TI(A_B)]kl

[Siz =" (0 KkE€ Dy, e Dg, (B3)
& —¢&
: T(+)
R L 71 T

I
BAllk 8;0) _ 8;{0)

After some algebra, we obtain the effective #-J Hamiltonian

I:It_JzﬁA[ﬁo‘l'I:IU"'IA{‘/"'7,\-‘(0)+I:IJ+IA13]ﬁA, (BS)
where
A . |
Hj= E Jl]<s(l) . S(]) - —ﬁ,ﬁj> N (B6)
(i) 4
Hy= X Jijlz (C;oﬁ]ﬁcla_ Cjzrcj'&cjo’cl&)7 (B7)

i#j#I(F#i) o

and (i,j) are pairs of different sites. f’A is the projection
operator onto the subspace 1), and the spin operators are
defined in Eq. (9).

For simplicity, we will assume that &,=¢g3=g;, &,=¢g
+A, l122123:t31:l, U1:U2:U3:U, and V12:V23:V31:V,
where A is the energy shift of the second dot due to the

change of the gate voltage. Then J;; and J;j; are given by

1 1
J12=J23=2t2(U_V_A+U_V_'_A)EJ, (B8)
41
J]3=U_VEJ,9 (B9)
21 1 B
Jp=lu=-J\ gyt y_y_a) =7 (B0
tZ
Ji21=_ J,. (Bll)

voven

With the understanding that we use I:I,_ ;only in Dy, we
can drop the projection operators and noting that

ﬁAi"(O)ﬁA:ﬁAfﬁA, (BIZ)
we obtain the effective ¢-J Hamiltonian
H =Hy+Hy+H,+T+H,+H,. (B13)
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